
OTC FILE COPY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

N

I I

IMPLEMIENTATION OF A HYPERTEXT HELP SYSTEM
FOR GLAD, A GRAPHICS LANGUAGE FOR DATABASE

by

Lon M. Yeary

June 1989

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution unlimited. D TIG
S ELECTE

FEB 13 1990
UPBU

Security Clasilficadon of this noes
REPORT DOCUMENTATION PAGE

I& Repoirt Security Claussflcation l b Restrictive Markings
Unclassified ________________________

C !!ffrM t':aMCI ==wolt 3 D= tlwda Aval~ability of Repon
1b Deae_ ade~Wn~radinsclhedUle A ccl for rbicielease; distribution is unlimited.
.4ftimmiftOrgouaiusm Repint NgmbW,) 5 otoeing utlatic. 6,01n Number(s)

Ga Nm. of= 1u119tng isnlzto 6b Office Symbol 7a Name of Monitorins OrgwAnzation

N" Soo, (if&2&4t* 52 aval Pc. ~uato School

____________ _ 93943-500. CA 93943-5000
Is Nam of 0. isoapde Ovgmlashle. 1b Office Symbol 9 Prootusenut Instrurnit Ideatlflasaton Number

(if Applicabl)

"ek* state.,W r co") 10 Source of Fundins Number ________

I I Title (InCWSd Security Claasflcatioes)
VAMIPEu0TAION OF A HYPERTEXT HELP SYSTEM FOR GLAD. A GRAPHICS LANGUACIE FOR DATABASE ______

13& Tpe ofRepm13b Tme Coi-ra14 ýDat of Report (yea, asrith~ly) 5 aoIF 'U
Master's Thesis Prom To Juno. 19849, 63
16 5ImuyNotalon Th vews expresseInti es;aotosof theauthor and10 not re e F the

Iior tiono D rnnt of Defense or the U.S. Government.
S Subject Terms (ccealnue mw revese if meceiwy and Wento' by bleck msmber)

ame p autý Online Help System, Hypertext, ACTOR, Object-Oriented, Graphical
User Interface, GLAD, Dtabase ,~-'set" ~ b-~..s

t Abstron (contl'su on reverse If cawary. an dn~Rbyl
Thug pane explores tho dci and implementation of a help system for a graphical user interface named

GLAD (aphics LAnguae for tabase). It examines help system design alternatives. Emphasis is on the,
implementato of L iza h ex hlpstrfoGLDsigteWnostityUIACadthobc-
oimieene p ogramming l ngael A R. DiscLADussininclde the aidvanags ofil hypertextNfo ondline holyr
system s. 41 -

20 Ditribsuia.Avalbit of Abstract 21 Abstract Security Classification
X umlma helsd same repat [3D71C ve' Unclassified

mh N o espoosibs Indvidual 22 eephne rIue Amc0)2 OficSyblt
Prof. C. Thomas WU (40 646-3391 Coe52Wu

D 3M1473, 94M1 3 APR edition may be uaed until exhausted aecurity culyfan ofthis pagne
All other edition~s are obsolete Unclassified

Approved for public release; distribution is unlimited.

Implementation of a Hypertext Help System
for GLAD, a Graphics LAnguage for Database

by

Lon M. Yeary
Captain, United States Marine Corps
B.S., United States Naval Academy

Submitted in partial fulfillment

"of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author:

Approved by: :''e•_e -1.0
C. Thp&l Wu, Thesis Advisor

David K. Hsiao, Second Reader

Robert B. McGhee, Chairman
Department of Computer Science

.ii --. J)

Dean of Information and Policy Sciences

ii

ABSTRACT

This paper explores the design and implementation of a help system for a graphical

user interface named GLAD (Graphics LAnguage for Database). It examines help

system design alternatives. Emphasis is on the implementation of a hypertext help

system for GLAD using the Windows utility GUIDANCE and the object-oriented

programming language ACTOR. Discussion includes the advantages of hypertext for

on-line help systems.

Aceosui'on Forx

NTIS GRA&Z MF
DTIC TAB

Unannounoed
.ustifi•@tio

I a.LOdIN ' D,""0 Distribution/

also) AvallabilitY Codes
Avail and/or

Dis~t Specils

iRIO

TABLE OF CONTENTS

INTRODUCTION I

A. OVERVIEW I

B. BACKGROUND 1

C. DEVELOPMENT OF GLAD 2

D. MOTIVATION FOR DEVELOPMENT OF A HELP SYSTEM 5

E. ORGANIZATION 5

II. HELP SYSTEM ALTERNATIVES 7

A. WHAT IS A HELP SYSTEM?............................ 7

B. TYPES OF HELP SYSTEMS 9

1. Static versus Dynamic 9

2. Multi-level Help System. 11

3. System-Initiated Help 12

4. User-Initiated Help 13

5. Screen Options 14

6. Extensibility 16

C. HYPERTEXT 16

D . SUM M ARY 18

MI. THE GLAD HELP SYSTEM 19

A. DESIGN CONSIDERATIONS 19

B. GLAD DESIGN CHOICES 20

C. GUIDE AND GUIDANCE 2.

iv

IV. GLAD HELP SYSTEM IMPLEMENTATION 29

A. INTEGRATING GLAD AND GUIDANCE 29

B. IMFLEMENTING THE HL SYSTEM ACCEIERATOR KEY .. . 35

C. GLAD HELP ORGANIZATION 36

D. MEMORY MANAGEMENT 42

V. CONCLUSIONS 45

A. STRENGTHS AND WEAKNESSES 45

B. FUTURE AREAS OF RESEARCH 47

APPENDIX A - SAMPLE SECTION OF GLADV02.RC 48

APPENDIX B - GLAD INITMENUID METHODS 51

LIST OF REFERENCES 53

INITIAL DISTRIBUTION LIST 55

LIST OF FIGURES

Figure 3.1 Standard Position of Help in GLAD Window 21

Figure 3.2 Structure of Guidance Help System 25

Figue 3.3 Shape of Guide Buttons 26

Figure 4.1 GLAD Hierarchy 31

Figure 4.2 Guidancelnitialise Routine 32

Figure 4.3 Example GLAD Methods Utilizing GuidanceSetContext 33

Figure 4.4 Guidance Use of Search String to Find Context-Sensitive Help ... 34

Figure 4.5 GladApp Class shouldClose Method 34

Figure 4.6 Demonstration of Expansion Button 37

Figure 4.7 Help Window With Replica of DML Window 39

Figure 4,8 GLAD Index Guideline 39

Figure 4.9 Example Numbering Used To Minimize User Disorientation . . . 41

Figure 4.10 GLAD Help Window Menu 41

Figure 4.11 Example Note Button 43

vi

I. INTRODUCTION

A. OVERVIEW

GLAD (Graphics LAnguage for Database) is a coherent, graphics-oriented Interface

for data manipulation and program development with a database (WU, 1989). It was

originally proposed in 1985 by Dr. C. Thomas Wu of the Naval Postgraduate School,

Monterey, California. This unified interface is designed for easy learning and use

while providing a comprehensive visual representation of a database schema. A major

design principal of GLAD was that the user should have access to additional

information whenever desired (WU, 1989). This thesis proposes a context-sensitive

help system utilizing hypertext to augment the information available to GLAD users

and increase the overall usability of the database interface.

B. BACKGROUND

In order to manage the vast amounts of information generated in today's complex

world, it is vital that a simple, yet powerful database management system be available.

Desirable systems would not require a costly database specialist to program every

modification. A second desirable characteristic of a database mmnagement system Is

that it must be easy-to-learn and use. GLAD research has been motivated by the

desire to develop a theory identifying the best methiod of graphical user interface for

1

interaction with a database. It was the lack of an easy-to-learn, easy-to-use query

facility for accessing databases that led to the proposal for GLAD. WU believed that

by proposing and comparing as many graphical interfaces as possible, a "best"

methodology could be established. GLAD is unique in that it is not based upon a

specific data model, however, It provides a visual representation of the tour mo,.t

widely used abstraction concepts: aggregation, association, classification and

generalization (WU, 1987, p. 3). Through the use of simple visual representation of

a database schema, GLAD is easy to learn and use. This is critical for wide-spread

use of a database management system. We believe this model for database

management holds the best potential as an end-user interaction tool.

C. DEVELOPMENT OF GLAD

There have been two cycles in the development of GLAD, Version ,01 developed

a rudimentary prototype to see whether a full implementation of GLAD using object-

oriented programming and ACTOR' was feasible (WU, 1989). The second cycle of

GLAD added a data definition component, bitmap display capability, and updated the

facility of the first version. Version .02 has added some classes to increase the

functionality of this and future versions. Originally, plans were made to develop

GLAD as a system compatible with Sun Microsystems' workstation. A study showed

this to be infeasible (Wu, 1989). Attempts were made to Implement GLAD using C;

ACTOR is a registered trademark of The Whitewater Group, Inc.

2

however, it was found that available routines were too low-level and very difficult to

use. For example, the code required to display a single scroll bar required ten

parameters (WU, 1989). Due to budget and manpower constraints this approach was

deemed unwieldy. A rapid prototyping tool was critical to the success of this visual

interface; therefore, a search began for a development tool which provided a quicker

and easier method of developing windowing routines. This development tool needed

to be capable of rapid prototyping and provide extensibility. Naval Data Automation

Command, a GLAD sponsor, imposed the requirement that the system be capable of

numning on an IBM PC/AT compatible MS-DOS machine. It was also considered

desirable to keep the system capable of being ported to other platforms such as Unix

and Macintosh. It was felt that features of an object-oriented programming language

such as inheritance, encapsulation and polymorphism would best facilitate the most

expedient implementation of GLAD. After exploring Smalltalk and other similar

languages, information on ACTOR was found. ACTOR appeared to meet most of the

requirements specified above.

ACTOR is an object-oriented language introduced in 1987 for developing Microsoft

Windows (MS-Windows)2 applications. It is a language that appeals to intuition and

does not depend upon the user possessing a wide background in traditional computer

science topics (Rowell, 1988, p. 77). In 1988, a GLAD prototype was successfully

'MS, Microsoft and Windows are trademarks of Microsoft, Inc.

3

implemented using ACTOR (Williamson, 1988, p. 32). ACTOR was selected as the

language to be utilized for the development of GLAD. Interactive in nature, ACTOR

features several powerful tools that provide a sophisticated programming environment

for developing MS-Windows applications (WU & HSIAO, 1989, p. 3).

Among the tools provided in the ACTOR programming environment are a Browser

for viewing, modifying, and creating classes, an Inspector for viewing object structure,

a Debugger for debugging ACTOR code, and an Editor for simple text editing.

ACTOR allows static and dynamic binding of variables which are useful for rapid

prottyping of application software while not compromising the efficiency of the final

software product. ACTOR is designed to run within Microsoft Windows on an IBM

compatible personal computer with at least 640K of memory and a hard disk (Duff,

et al., 1989, p. '). An EGA or VGA color monitor and extra memory are highly

desli kbte, though optional. The prototype for GLAD was developed using ACTOR on

an AT-:omparible maichine with an EGA color monitor and a 386 machine with a

VGA color monitor,

GLAD provides an object-oriented data model which provides a close relationship

between t;.,- structure of the database to be modeled and the logical entities used within

th,, -: .,'ct-orientcd programming environment. Wu and Hsiao (1989) have identified

;:,x design principles for the development of GLAD, The program should be able to:

* Provide more information wt-.n asked.
• Recover from the unintended or erroneous operation.

l,•ifon-n tl:. same operation in wore than one way,

4

* Perform logically equivalent operations in a consistent manner.
• Display multiple information at the same time.
* Diplay multiple views of the same infonnation.

1W

D. MOTIVATION FOR DEVELOPMENT OF A HELP SYSTEM

While it is theoretically possible to develop a computer program that is so well

designed that no user assistance is ever required, praotically speaking, it is impossible.

The philosophy of the GLAD project is that the end-user should have easy access to

any information that will permit the maximum possible usability. Design principle one

states that the user should have access to additional information when requested. It is

envisioned that a user will be able to obtain assistance from within the GLAD

environment concerning any operation, term, or process. The purpose of this thesis is

to research, design and implement a help system that meets the design principles

proposed by Wu which will promote even greater end-user usability for GLAD.

E. ORGANIZATION

The remainder of this thesis is organized as follows. Chapter 11 discusses help

system design alternatives. Chapter III discusses the design decisions made in the

development of the current GLAD help system. It includes a discussion of constraints

imposed by the GLAD environment and the decision to incorporate hypertext into

GLAD. Chapter IV discusses the implementation details of the GLAD help system.

It includes a discussion of the utilization of dynamic link libraries with ACTOR and

the incorporation of the hypertext system GUIDANCEj. Cot fusions and future

research for GLAD are dis•,d in C•apter V.

•Ouidance to • registered tradomark of Owl International, Inc.

6

U. HELP SYSTEM ALTERNATIVES

A. WHAT IS A HELP SYSTEM?

A help system is a program (or several program) that assist the user in the

operation of another, usually, larger program. The help system can either be a separate

program that runs concurrently with the larger program or, as is more common, a

program that is completely integrated within the larger application (Kearsley, 1988, p.

3). Help encompasses a continuum of assistance to the user, from a memory jogger

of available commands to on.line documentation which Includes or supplements the'-

user manual. Help includes error messages, tutorials to-assist in the learning process,

and detailed explanations of terminology. Help also includes prompts which guide the

user through the available choices withi" the program.

Help for a computer user comes in two basic formu. It can be printed (hard-copy)

which includes user manuals and reference guides, or it can be on-line. Tutorials are

another form of computer help- they can be printed, on-line or both. There are

advantages and disadvantages to both printed and on-line help. Research has shown

that speed and comprehension is greater using printed materials than when reading

from a CRT (Shnelderman, 1987, p. 360). Printed help allows the user to refer to his

wo*k and the help information simultaneously without interrupting the program.

7

"On-line help provided in a windowed environment will also provide this capability.

On-line help has the advantage of being available any time the program is running.

While at the terminal, the user does not have to be concerned with locating the

manual, and manifold users within an organization will not have to purchase multiple

copies of documentation. Additionally, on-line help is enerally current. Unlike a user

manual which may be outdated with respect to the software, on-line help is usually

updated with the software; therefore, it is mote likely to be current.

Regardless of the advantages of on-line heip systems, it is clear that they cannot

completely replace the printed user manual. A "perfect" help system would be of no

use to a naive user who did not know ,how to turn the computer on. Instead, an on- .

line help system can be thought of as a method of 9nhamcing or augmenting th"

information available to a program user. This thesis addresses the development of in

on-line help system. It will not discuss, the need to develop a Soqd user mup for

GLAD.

Dumas (1988, p. 50) proposes seven principles for a good interface design. One

of these design principles is the incorporation of an on-line help facility. A well

designed help system cortrbutes to the overall usability of a program by reducing the

time it takes to complete an on-line function and by reducing the number of errors

made. Jackson and Lefrere (1986), Shneiderman (1987), and Kearsley (1988) all

discuss rebearch which confirms the advantages of a well designed on-line help system.

Improving the design of the help system will improve its benefit to the user.

8

IV '•.: . V+- . .•• , , , , ,,

Improved user performance and user satisfaction can result from having a skillfully

planned help system integrated into a software program. If only by providing

increased confidence for the user, a help system can be beneficial, speeding the process

of familiarization (Jackson and Lafrere, 1986, p. 64).

To be truly useful, an on-line help system must be easier and quicker to use than

a manual (Roberts, 1970, p. 547). In addition, it must be accurate or it will destroy

any confidence the user might have in it (Killory, 1987, p. 19). On-line help is only

useful if it is capable of providing assistance to a user to derive or debug a plan of

action (Jackson and Lefrere, 1986, p. 63). When users request help, normally they are

seeking a specific explanation for an immediate problem. A help system cannot

assume that a user possesses a specific proficiency level. The help system must

present information commensurate with the user's level of expertise.

B. TYPES OF HELP SYSTEMS

1. Static versus Dynamic

There are many design altematives available when developing an on-line help

system. One of the first considerations is whether the help offered should be static,

that is independent of where the user is in the program and any previous actions, or

dynamic, that is dependent on where the user is and what the user's previous actions

were. Static help could be thought of as a kind of "on-line glossary of terms"

(Kearsley, 1988, p. 14). A list of terms is provided with a brief explanation when a

9

user requests help. Regardless of the function being performed during program

execution, the same information will appear whenever help is requested.

WordPerfect's' F3 key is an example of a static help system. When F3 is pressed, the

user is presented with the same list of command options regardless of where he is in

the program. Static help allows requests for specific terms, however, the user must

know what term requires further explanation. While It is sometimes helpful to provide

every detail to the user searching for a solution to a problem, it is possible to provide

so much information that the user becomes lost or distracted. If the search takes the

user through unnecessary information, the user may be delayed in actual task

completion.

Dynamic help that is sensitive to the sequence of user requests or actions can

be developed. Dynamic or context-sensitive help offers assistance based on the

function being performed during program execution. For Instance, if the user is in

the edit mode of a program and requests help, an explanation of edit commands

available user would be provided without listing unrelated commands. Dynamic help

can be as simple as an explanation of an error message or it can be more

sophisticated, providing detailed information of program options based on where the

user is in the program or the function being performed. By increasing the degree of

context sensitivity, the usefulness of the help is increased.

'WordPerfect is a registered trademark of WordPerfect Corporation.

10

A powerful form of dynamic help is a dialog between the user and the system.

The dialog guides the user through the problem providing step-by-step instructions

(Kearsley, 1988, p. 16). Dialog help is difficult to develop. It requires the

incorporation of assistance for every possible user action or question into the help

system. These help systems require extensive error checking to ensure correct user

Input. SHERPA, a help system developed by ComTrain for LOTUS 1-2-3, is a good

example of a dialog-type help system which uses prompts to assist the user through a

series of functions (Kearsley, 1988, p. 35).

2. Multi-level Help System

It is clear that providing a complex step-by-step procedure for every user may

not be desirable and may even slow processing time considerably for the experienced

user. Therefore, another design alternative Is to provide multiple levels of help, giving

more detailed information for each successive level of help requested. In addition to

increasingly detailed information, successive levels of help would provide examnples,

qualifiers on use, or descriptions of related commands. Some programs such as

MicroPro's WordStar' allow users to set the level of help when the program is

Initiated. WordStar users have the choice of four levels of help, ranging from a full

menu of choices on screen at all times to no help prompts displayed. Another example

of a multi-level help system is one that utilizes different terms to request different

'WordStar in a registered trademark of MicroPro International Corporation.

11

levels of help, for exanple, "Define," "Explain," "Example," or "Limitations" (Kearsley,

1988, p. 17). Having different levels of help available is an attempt to meet the

specific needs of various users including the novice, the occasional user needing only

a memory aid, as well as the experienced programmer.

3. System.Initiated Help

Help requests may be initiated by the user or by the system. System-initiated

help, usually given as advice or as a suggestion, Is frequently triggered by an error

condition. For example, if a user types a command that is inappropriate for the current

function, the system would provide a list of all the correct alternative commands.

Some users perceive system-initiated help as an interruption or as a delay in using the

program, and may even consider the messages as "nagging". System-initiated help is

necessary in some systems to prevent users from making "fatal errors", especially in

systems where errors could result in catastrophic consequences. System-initiated help

also assists the user by pointing out shortcuts that may have previously been unknown.

This could prove useful to the novice and experienced user alike. For example, the

system may be designed to inform the user when he is using several operations to

acconm.Msh a task which should be incorporated into a single operation.

If system-irwitlated help is utilized, it is recommended that the user be given

the option of turning it off or specifying the level of message desired (Kiarsley, 1988,

p. 20). Specific messages of highest priority could be left on, while allowing the user

12

to turn off advisory messages that may not be pertinent to their use. In order to

provide the advantages of system and user-initiated help, a system can be designed

which incorporates both.

4. User.Inltiated Help

User-initiated help can be activated through a variety of means, including typing,

a help command,, pressing a designated help key, or by selecting a help option from

a menu. The advantage of this method is that the help may be obtained independently

of typed input. The disadvantage is that the user may not remember which key is the

help key unless a method for keeping a reminder on screen is utilized. Typing a help

command may be desirable in that it allows for complex syntax to be used to take

the user to a specific area of needed assistance; however, the user will have to

remember the correct syntax of the help command.

Utilizing menus with a help option has several advantages. The user will have

command options displayed in the menu eliminating the need to remember the

command choices. In addition, the user is reminded every time he looks at the screen

that the help option is A. :.1 able. Menus havo the same problem as designated help

keys in that both require the user to specify the topic on which help is required.

Menu help systems allow the user to select from an index of topics. The need for

greater specificity is eliminated if the system is context-sensitive. The fact that a

system is menu-driven does not necessarily imply that it Is effective. "In fact, poorly

13

,,i 7..

designed menus am one of the most common problems with application software"

(Dumas, 1988, p. 60).

Menu-driven systems are becoming increasingly popular. Microsoft's Word,

MicroPro's WordStar, and Wordperfect Corporation's Wordperfect have all released

menu driven systems. Aids in converting existing programs to menu-driven programs

are already on the market. Macintosh's iconic menu system Is very popular due to its

asne of leaning. While this is primarly a movement toward improving user-interface

design, it directly affects help systems available to the user. Commands will be on

screen, eliminating the need to remember the exact syntax of the command or the

proper command key.

S. Screen Options

Formatting of the screen, to a large extent, will be dependent upon the

capabilities of the operating system being used and the constraints of the programnming

environment. It must be deteindnod if the help message will be located within thu

existing screen or if a sepaa•te screen will 9pjx;z Critics of on-line help systems

state that it Is difficult for users to teawember what the help scretn -., ",,hen they

have to switch back to the operating screen (%Oss, 1985). Help messages that are

displayed on pan of the operating screen, for example at the bottovAi or on the next

available line, may be limited in the depth the help message can display due to limited

'Word is a registered trademark of Microsoft, •nc.

14

space. It also may be desirable, as mentioned earlier, to keep on the screen the

information needed to access the help system, i.e., "F-i 1 Help". This is usually

located either at the top or the bottom of the screen.

Operating systems that support bitmapped graphics allow for independent

windows that can eliminate many of the problems in screen formatting. Windowing

capabilities allow for both the operational screen and the help screen to be displayed

simultaneously. The operating system being utilized will dictate if the windows will

overlap each other, potentially blocking part of the other screen, or if the window can

be moved and adjusted in size to allow the user to have access to both sets of

information. Some of the problems that have been identified in the use of windows

are that excessive window manipulation may be time consuming and distracting, the

need for window borders consumes valuable screen space, and small windows with

*i large amounts of information may lead to excessive, bothersome scrolling (Galitz, 1989,

p. 99).

Another consideration in screen formatting is whether the help screen should

page or scroll through the information if it exceeds the space available. Both methods

should keep in mind that the user should have to exert minimal effort to go both

forward and backward in retrieving information to minimize any delay.

15

6. Extensibility

Extensibility can be defined as "the came with which software products may be

adapted to changes of specifications" (Meyer, 1988, p. 5). Extensibility is very

Important to the design of a good help system. The information contained in the help

must be modifiable. As the software program evolves, the help system will need to

keep pace to remain useful. The user may also want to "personalize" the help system,

adding more information to the help message to reflect the way the command Is used

(Kearsley, 1988, p. 23). A system of preventing inaccurate information from being

added to the help system must be utilized in order to maintain the integrity of the help

system. If a user altered an existing help message inaccurately, it would ultimately

affect many users who also utilize the program. The proposed solution to this problem

is to allow additions to the help system while preventing modifications to the original

content of the help system.

C. HYPERTEXT

Hypertext has been hailed as Ideally suited to help systems (Kearsley, 1988, p. 19).

While hypertext has been around for over two decades, it has recently enjoyed an

upsurge In interest (Conklin, 1987, p. 32). With hypertext, windows on the screen are

associated with objects in a database, Links are provided between these objects both

graphically and in the database as pointers. Major terms or control options can be

selected that will then be further explained. Any tenn or graphic display can be used

16

to provide further help. Hypertext is capable of performing "high-speed, branching

transactions on textual chunks" (Conklin, 1987, p. 32). It cuts across traditional

boundaries; at the sane time it is a database method, a representation scheme, and an

interface modality (Conklin, 1987, p. 33). It ia a way for high speed, automated

browsing through information (Guide, 1988, p. 3). Any text item can act as a "trigger"

for various kinds of help information and actions (Kearsley, 1988, p. 43). Owl,

International introduced "Guidance" in 1988. It is, on its simplest level, a context-

sensitive on-line help system that uses hypertext. It is a "read-only windows

application with a simple interface so that It can be driven by a host application"

(Guidance, 1988, p. 5).

Although there are many advantages to using hypertext. Conklin (1987) lists these

nine as significant:

* Ease of tracing references.
- Ease of creating new references.
- Information structuring.
* Global views.
0 Customized documents.
a Modularity of information.
• Consistency of information.
- Task stacking.
* Collaboratio•.

He also identifies two mnajor problems in the use of hypertext. First, a user can get

lost in the document because thl'vw Is not the traditional linear way of moving through

the document. This "disorientation problem" can be corrected through technical

solutions, such as the use of a graphical browser that can "map" the vetwork that is

17

linked. Secondly, "cognitive overhead" or the additional effort needed to juggle several

tasks at once may become troublesome with hypertext. However, utilizing a rapid

cross-reference node can ease this problem, as can an instantaneous one to three line

explanation In a pop up window as a side reference.

Through the use of hypertext, it is possible to incorporate many of the concepts

in help design alternatives that promote maximum usability. Hypertext allows for both

static and dynamic context-sensitive help on a multi-level basis. It can access specific

information needs through the use of major terms which serve as pointers or triggers

to elaborate further information.

D. SUMMARY

Help system design provides several alternatives. Tradeoffs will be required

between space, time and functionality. Design decisions needed in creating a help

system have been delineated. Major decisions include:

* Utilizing static or dynamic help.
• Making the help system multi-leveled.
* Making help user or system-initiated.
, Selecting screen options.
• Incorporating extensibility.
* Utilizing hypertext.

Hypertext appears ideal for the development of a help system. A good help system

will incorporate the best features of each design alternative.

18

IM. THE GLAD HELP SYSTEM

A. DESIGN CONSIDERATIONS

The objective of this project Is to develop a help system for GLAD. Inherent

within this project are certain constraints. First, the program must be able to run on

ta MM PC compatible computer as requested by the project sponsors. Second, GLAD

is a Microsoft Windows'-based application. It is, therefore, logical to develop a help

system that is Windows.based, Windows provides certain conventions and capabilities

which influence the design of a help system. A few examples of these conventions

*•i" and capabilities are the use of a mouse, adjustable windows, a common menu

presentation and a common method of closing windows. GLAD is a graphical

S- interface. In order to maintain the desired consistency, it is logical that the help

system provide graphical capabilities as well. In addition, Windows easily facilitates

the presentation of bitmapped graphics.

The design principles for Glad were established n-lJor to the design of the help

system. These six design principles must be adhered to in order to keep the help

system consistent with GLAD. Previous developers of GLAD have suggested that it

M'icrosoft Windows hersafter referred to an "Window.".

19

should include a context-sensitive help system (Williams, 1988, Wu and Hsiso, 1989).

These suggestions have directed the design of the GLAD help system.

Another consideration in designing this help system is that GLAD is still under

development. A quality method of Imple t the help system was needed which

would provide extensibility and easy modification. One final constraint which must be

cosmidered when wodding on any project of this nature is time. The time availaile for

the completion of this project was finite.

B. GLAD DESIGN CHOICES

Given the above constraints and the design principles for GLAD, certain choices

for the help system were obvious. First, since GLAD is a Windows-based application,

the help system for GLAD must also run in windows. Second, since previous

developers of GLAD specified the need for context sensitivity, a dynamic help system

capable of sensing the location of the user within the document is preferred. Third,

to be useful to both the novice and the experienced user, the help system must be

multi-leveled, allowing the user to view as much information as required. Naturally,

the system has to nn on ttw sam hardware as GLAD.

The requirement of having the help system run within the Windows environment

is, in many ways, a design advantage. The Microsoft Windows development

envisonment eases design decisions through Its conventions and capabilities. The first

design principle of GLAD states "be able to provide more information when asked".

20

The Windows programming environment establishes a conventions which provides a

convenient method of incorporating this principle into the help system. Programming

Windows recommends the right justified position on the menu bar u the standard

position for help (Petzold, 1988, p. 361). It also recommends enclosing the HELP

me"nu selection within a box which separates it from other menu selections (Petzold,

1988, p.406). Windows provides simple methods which allow menus to be developed

utilizing these conventions. FI=HELP appears in the standard position enclosed in

L ,-n every menu bar of GLAD, see Figure 3.1. Help can be accessed by clicking

the left mouse button on Fl-HELP within the menu bar from any window of GLAD.

"" Create AodU9 Open Remove Quit Fl-Help

Figure 3.1 Standard Position of Help in GLAD Window

21

Another convention of the Window Programmers Reference Manual is the

establishment of the F1 key as the standard keyboarc accelerator for access to help.

A keyboard accelerator allows users to execute a command using the keyboard which

can also be executed using the mouse. This convention of accessing help through the

F1 key has been incorporated into GLAD. Design principle three states "be able to

perform the same operation in n- than one way". Thus, the GLAD user has been

given two methods to access the help system. He can either select FlaHELP using

the mouse from the Help window menu bar or use the keyboard accelerator Ft.

Regardless of the method used to access help, the Fl=Help box flashes on the menu

bar to give the user visual feedback that help has been accessed.

Using Windows provides screen options that make the help systs,;a more utilitarian.

It is frustrating when the user is required to switch to a screen where his work Is no

longer visible in order to reference the on-line help, only to be required to switch

back while remembering all of the pertinent information just viewed. Using an

overlapping window allows the user to simultaneously view his work and refer to help

in a separate window. The user will not have to memorize information before

switching to his work screen. This ability to overlap and position a help window

anywhere. on the screen has been incorporated into the GLAD help system. The

information provided must be neatly formatted and presented in such a manner that

each screen explains a complete operation or concept. Forcing the user to scroll

22

through an unknown amount of information can cause "information anxiety" as in

continuous scroll help systems.

Windows provides standard methods for closing windows which have bean

incorporated into the GLAD help system. The help window can be closed with the

keystroke combination ALTF4, clicking on the control-menu box and selecting close

or by double-clicking on the control-menu box. These methods of closing the help

window are consistent with all Windows-bued program. This consistency and

flexibility adhere to design principles three and four, "perform the same operation in

more than one way" and "be able to perform the logically equivalent operation in a

consistent manner."

The problem then, is how to incorporate these design conventions into a help

system for GLAD. Consideration was given to writing the entire help system using

ACTOR, however, the amount of code needed could be unwieldy and require

substantial amounts of time to generate. In addition, changes would demand that

someone study and re-write the help system code for each change to GLAD. Using

ACTOR would allow graphics to be incorporated into the help system; however, this

could be difficult unless the graphics were limited to simple geometric figures such as

circles and rectangles.

The decision was made to research the incorporation of GLAD with an existing

program designed to produce a Windows-based help. This program would have to

be capable of being easily integrated into GLAD Consideration was given to using

23

Aw,

a stand alone help program called "HELP" produced by R Company (1988). This

application would run independently of GLAD, but it would provide an easy method

of providing textual help for Window-based applications. This was ruled out, because

it did not allow the use of graphics within the help system, It was considered an

inadequate solution for GLAD's help system.

C. GUIDE AND GUIDANCE

A second application which was considered and ultimately selected for incorporation

into the GLAD help system is OWL International's Guidance (1988). Guidance is a

read-only Windows utility designed to allow users to display help while running a

host application under Microsoft Windows, Guidance pennits the integration of a help

system which meets the design requirements of GLAD. Help information is contained

in files referred to as Guidelines. These Guidelines can contain both text and bitmapped

graphics. Guidelines are created using a program called Guide'. Guide is a general

purpose hypertext document generator supplied with Guidance (Guidance Manual, 1988,

p 9). Guidance not only furnished a simple means of incorporating text and graphics

into the GLAD help system, but also provided the advantages of hypertext. ACTOR,

the implementation language of GLAD, allows the easy integration of Guidance without

excessive coding.

'Guide is a registered trademark of Owl International, Inc.

24

N.

When accessed, Guidance opens an Index Guideline which is similar to a "Table

of Contents". This Index then connects to either another part of the Indlex of' to a

Secondary Guideline, see Figure 3.2.

GLAD

APPLICATIONIDX
INDEX,

SECONDARY
GUIDELINES

Figure 3.2 Structuie of Guidwice Help Systemn

Guide furnishes four types of buttons as a means of accessing information withinl

Guidelines: Reference, Expansion, Note and Command. These buttons ane thle building

blocks which create the help system structure. Infonnation contained within tile help

system which is linked to additional material Is indicated by these buttons,

25

Reference buttons provide a means of linking material within a Guideline or

between Guidelines. This powerful cross-referencing capability allows the user to

move quickly to other areas of the help system. Infonnation which Is linked to a

reference is indicated by tile word or words of the Guideline shown in Italics. When

the cursor is positioned over a reference, the cursor changes to an arrow. See Figure

3.3 for the cursor shape of reference buttons. Graphics or areas of a graphic which

are linked to a reference are also indicated by the cursor changing to an arrow.

Clicking the left mouse button when the cursor is In this arrow shape will cause tile

reference link to be traversed and the additional hiformation to be displayed.

EXPANSION BUTTONS

REFERENCE BUTTONS

~ NOTE BUTTONS

I• COMMAND BUTTONS

GUIDE BUTTONS

Figure 3.3 Shape of Guide Buttons

26

Expansion buttons allow information contained in the help system to be

hierarchically nested. Text within a Guideline which is an expansion button is

Indicated in bold type. Positioning the cursor over this bold type will cause the cursor

to change to a cross hair. See Figure 3.3 for the cursor shape of an Expansion button.

Positioning the cursor over an area of a graphic which is an Expansion button also

changes the cursor to a cross hair. When a user positions the cursor over an expansion

button displaying the cross hair, clicking the left mouse button causes the information

which is hidden below the button to appear. This information can be nested to ai

infinite number of levels. The user can go from level to level as desired, continually

revealing more and more details.

Note buttons allow the user. to access small pieces of supplementary information

about a topic and are intended for temporary display. Text which Is linked to a note

is underlined. When the cursor is positioned over a Note button it changes to an

asterisk. See Figure 3.3 for an example of the shape of the Note button cursor. When

the cursor is positioned over a graphic which is linked to a Note button, the cursor

changes to an asterisk. When the user clicks on a Note button a small overlapping

window appears containing the additional information. This window remains visible

only as long as the user continues to hold down the left mouse button. Note buttons

are well suited to an on-line glossary, example formulas or short helpful hints.

Command buttons allow the user to launch other applications from within the help

system. This would be useful if the user wanted to open up a text editor or a

27

spreadsheet to obtain information for entry or modification to a GLAD database. A

user could also use this feature to open a text editor to jot down notes about the

database he was using in GLAD. The cursor changes to a solid black arrow when

positioned over a Command button. See Figure 3.3 for an example of the cursor

shape of Command buttons.

Utilizing Guidance to implement a help system for GLAD has several other

advantages not previously mentioned. Guidance allows the GLAD help system to be

expanded or updated without requiring changes to the GLAD executable file. Guidance

is designed to run in Microsoft Windows and is able to take full advantage of all of

Windows' conventions. It furnishes multi-level capabilities through the use of

hypertext. Guidance also provides functions which allow the help system to be

context.sensitive. The next chapter will discuss the implementation details of

incorporating Guidance into the GLAD help system.

28

IV. GLAD HELP SYSTEM IMPLEMENTATION

A. INTEGRATING GLAD AND GUIDANCE

Guidance takes advantage of a feature in Microsoft Windows which enables

interapplicatlon communication. This feature of Windows is referred to as Dynamic

Data Exchange (DDE). Within Guidance is Gydance.exe, a dynamic linked library

(DLL) or dynalink (Petzold, 1988, p. 805). Dynamic linked libraries are a feature of

the Microsoft Windows environment that allow separate applications to dynamically

share code. Each module is compiled and linked separately in an executable file.

Utilizing the DLL, Gydance.exe, GLAD is able to communicate with Guidance through

* DDE. In essence, it allows Guidance to become an extension of the GLAD program.

The advantages to this are that the application file is linked to help only at run time

when needed, making the GLAD executable file smaller and less memory intensive.

The link is also faster because only those modules which need to be linked are linked.

Most Importantly, several different applications can share the same resource, which is

especially critical in a large integrated programming environment (Draganza, 1989, p.

59). ACTOR provides the library and procedure classes which allow easy integration

of DLLs.

29

Cydance.exe furnishes three routines which allow GLAD to interface with Guidance.

These routines are:

* Guldancelnltlalise.

* GuidanceSetContext.
* OuidancTerminate.

As the name implies, Guidancelnltialise initializes a link between GLAD and

Guidance. Once established this link remains until the GuldmnceTerminate routine Is

called. A link to Guidance must be established through Guidancelnitiallse prior to any

requets for context-sensitive help using the GuidanceSetContext routine.

GuIdancelnltiallse must include the name of the index guideline. The GLAD index

guideline is the file index.gui. AU files associated with the help system are noted by

the ".gui" extension.

Figure 4.1 shows the GLAD hierarchy. This figure indicates where the link to

Guidance is established. The Guidancelnitialise routine Is executed in the InitGuklance

method of the GladWindow class. This method is executed each time a Glad Window

object is created. Figove 4.2 shows the ACTOR code associated with the

Guidancelnitialise routine. Notice that prior to executing the Guidancelnitialise routine,

GLAD must create a)),'w library and add the three routines provided by Guidance.

Each GLAD window which contains a menu bar provides access to help. When

a user requests ht .4, by selecting "FI=HELP" from tht; menu bar, a help message is

sent to the sipprupriate GLAD window. The help method of each window class includes

a call to ý'.e GuidanceSetContext routine. This routine enables the help system to be

30

Errr ax Indexed StDialog Window

GudaceBrlnt Routin
OdAnrrntayle CalledMy~n

* GudnecolonectRotioneWno

Contlle ýin idDtiedCaalog~ n pl
Guianc Intialis Routine

Fiue . LAGiraphchyLA

Object i n~31

/* Initialialse call to Guidance */
Def initGuidance(selflaStr,aString)
(Lib :- new(Library);

Lib.name := "Oydance.exe";
add(Lib, OGUIDANCEDNUIMALISE, 09 #(0 0 1 1 0 0));
add(Llb, OGUIDANCESBTCONTEXT, 0, 0(0 1 0));
add(Lib, #OUIDANCETRMIUNATr, 0, #(0));
load(Lib):
aStrlris :a "GLAD";
aStr :a "index.gul";
HOuide :.pcall(Lb.procs[#GUIDANCEITALISE],
.HlIntaie, handle(self), lP(aString),

rP(aStr), 1,1);

Figure 4.2 Guidmncenltiallse Routine

context-sensitive. Included in this GuidanceSetContext call Is a string that contains

the name of the current GLAD window. Figure 4.3 contains some examples of the

GLAD methods which utilize the GuidanceSetContext routine. Notice the name of the

calling window is contained in a string in each method. Guidance searches the index

guideline for this string, then traverses the link to the guideline containing information

about the requesting window. This guideline then appears on the screen. See Figure

4.4.

Figure 4.1 also indicates the location of the GuidanceTermnate routine within the

GLAD hierarchy. This routine is executed by the shouldClose method of the GladApp

class. When the shomldClose message is sent to the Glad Application, the

32

GladWindow Class

DeC topHelp(selflaStr)
Ia&Str muaciiz("GLAD WINbDOW");

* pcail(Lib.procs[#OUIDANCESETCONTEXTJ ,HGuide,
lPaStr),);
freeHmndle(aStr);

DMWlndow Class

Def help(selflaStr)
1aStr :wasciiz("Data Manipulation Window");

pcall(Lib.procs[#GUIDANCESETCONTEXT],HGuide,

freeHandle(aStr);

D)DWindow Class

Def help(selflaStr)
(aStr :mucliz("Data Definition Window");

pcall(Lib.procs(#GUIDANCESETCONTEXr] ,H~uide,
* IP(aStr),l);

freeHmndle(&Str);

ListMemWhidow Class

Def hclp(selflaStr)
(aStr :wasciiz("List Members Window");

pcall(Lib.procs(#OLYIDANCESE'rCONTEXTJ,HGuide,
IP(&Str), 1);
freeHandle(aStr);

Figure 4.3 Examnple GLAD Methods Utilizing Guidance SetContent

33

Data Manipulatlon

, Fl'HELP "DOL WINDOW"

DOL WINDOW

Data
"Manipulation

Index.gul Window

HELP

DHL. gul

Figure 4.4 Guidance Use of Search String to Find Context-Sensitive Help

/* If any cleaning up needs to be done in the application before closing,
it should be done here. */
Def shouldClose(self)
(pcalI(Lib.procs[#GUIDANCETERMINATE],HOuide) I I

Figure 4.5 GladApp Class shouldClose Method

34

GuidenceTerminate routine is, executed. Figure 4.5 depicts the shouldClose method

GuidanceTermninate removes the link between Guidance and GLAD.

B. IMPLEMENTING THE HELP SYSTEM ACCELERATOR KEY

Menus for GLAD windows are defined in the "resource script file". This is an

ASCII file which contains GLAD's menus, dialogs, accelerator keys, icons a,,i, strings.

(Duff, and others, 1989, p. 343). GLAD's resource script file is gladv02.rc.

Incorporating the FI accelerator key involves altering GLAD's resource script file,

Appendix A contains a portion of gladv02.rc. Code to implement the Fl accelerator

key is delineated in bold lettering. In the line

\a"FI=HeIp", HELPER, HELP

the (6a) causes 'Fl=Help" on the menu to be right justified. "HELPER" associates the

identifier HELPER with this menu selection. The word HELP causes a box to be

placed around the words "Fl=Help". In gladv02.rc, the line

VKFI, HELPER, VIRTKEY

associates the F1 key with the identifier HELPER, The line

#define HELPER 950

is contained in the file glad.h. The integer 950 can then be used as an index to the

dictionary which contains the menu selections for each GLAD window. A dictionary

in ACTOR is similar to an array in procedural programming languages. This number

was arbitrarily chosen; however, it had to be higher thaii the number of menu options.

35

This is a standard Windows convention for calling help. For further explanation of RC

and header files refer to Petzold (1988) . The UlitMenulD method of each window

class contains the dictionary which associates the identifier "HELPER" with the help

method for each appropriate class. Appendix B contains the InitMenuID methods for

each GLAD window class.

C. GLAD HELP ORGANIZATION

The Guidelines for GLAD were designed to provide modules of information for

each window within the GLAD hierarchy. These Guidelines were further developed

to provide multi-leveled help within each Guideline. This enables the user to retrieve

only as much information as desired. Figure 4.6 demonstrates how the user is able to

access nested information through the use of expansion buttons. The top window of

Figure 4.6 shows a section of the GLAD Data Definition Window Guideline. If the

user desires additional information pertaining to the QUIT menu selection, he can

obtain this information by positioning the cursor over the text "QUIT". The bold font

visually indicates that the text "QUIT" is an expansion button. The cursor changing

to a cross hair confirms that the text below is an expansion button. Clicking the left

mouse button displays the information shown in the bottom window of Figure 4.6.

The modular design of the GLAD help system allows Guidelines to be altered with

minimal effect on the remainder of the help system. Keeping the Guidelines small

permits quick, easy reading and reduces the amount of memory required.

36

Er Ut lop &*arch lack Fl-HELP

(4.1 .5)DELET .E -'Selctlno Adeete witdlete entitle fromn the
database schema whilch swe no longer heeded.

(4.1.8) HLP -Pro'des compreihensifie user assIstance. For
information concerning the reeding of hypertext and using this
help system. click 6n H 9LP at' beinning of this paragraph. For..

.. .* .an index to3LD help topicsdlak n GLAD hiplIndexN
following thiff paragraph.

(4.1 .7)QU IT- IeWe current window,

.Help contcerig QUIT Prior to expanding

iKl

1,60:1 Iw ;es l
(4.1 5)DELETE 4Selecting de1 ftavwill delete entites from the
database schema which are no longer needed.

(4 1.-0) HELP -Proyides ocomprehensiv user assistance, For
Information concerning the reading of hypertext and using this
help system, click on H ELP at beginning of this paragraph. For
an index to GLAD help topics dick on " GLAD help Index"
following this paragraph,

(4.1 .7)QU IT- Closes the iODL window and returns the user to the
GLAD WINDOW. When In the GLAD Window QUIT returns the
user to the Wlindows operating system.

GL4Ohd hallaw

Help concerning Q=I after expanding

Figure 4.6 Demonstration of Expansion Buttons

37

•(7 *: #. . '. . ,

* ' The help system is designed to emulate the look and feel of GLAD. The Guideline

for each GLAD window contains a replica of that window, see Figure 4.7. Ideally, the

.help. stan will behave identically to the GLAD proram, except the user will be

ptwoid with help nformiton when mn opraon Is elected. This allows the user to

visually aUsociate a GLAD opration with a replica of that operation contaibnd inthe

AHLP Guidelines. For example, the user can obtain:,help by positioning the cursor;

over the tem in the replica's menu bar tht comreponds with the same menu selecion

in the GLAD window. Clickins the mouse on this item causes the help system to

respond similarly to GLAD and provide help on that operation. Examples of O•L ".

operations will also be Included whenever possible wlt'Ain help to make the information',,

as clear as possible& 4

As mentioned in Chapter 11, the potential to.become d ted while reading,

hypertext documents Is a disadvantage of hypertext. A numbering system was,

incorporated into the GLAD help system in order to minimize user disorientation while

accessing help. The numbering system allows the user to, at minimum, identify which

Guideline he is using. The Guideline number corresponds to a number assigned in the

Index Guideline. F4gure 4.8 shows the GLAD Index Guideline and its associated

indics. Each successive nesting level within thi Guideline will add a decimal point

and a digit indicating the user's relative position in the Guideline. For example, 4.1.2

would indicate the user is two levels deep in the fourth Guideline. Figure 4.9 shows

an example of the numbering system. Should the user become disoriented, Guidance

38

,. .

trint lop jeatch JLack Fl-HELP

(8.) DATA. MANPULA-lO.N. (DML) WiNDOW

:0crb [Uefiep. LiutNmberi 'Chang* 40aery

ELEOSYIN [PHTO3 LTJTL.sYs

ENu-sYs AI_ TOILS FURL.SYS

The G LAD D M L. Window Is displayed each time an existing
database Is pame., The content of this window Is dependent on
the database selected, The window above shows an example -of
opening a AH 1 S Helicopter database. For additionaliInformation on
0 LAD D ML window operations, expand G lad M L Window Menu.

Figure 4.7 Help Window with Replica of DML Window

9.0 O wskvte
2. 0 OL/?tMWAnervs 1'Ok'w

11 .0 RIoov DA&ft' s
12 .0 Us# &*vjL/w~is1UAWW*A

iur .8 GLADe Idex&k Guidelin

7.0 0*W~v3~

provides the menu selection BACK on the help window menu bar. This allows the

user to retrace the steps that he has taken within the Guideline. Guidance also

provides a TOP menu selection. Selecting TOP automatically takes the user to the

beginning of the Guideline. Links to the Index Guideline been have dispersed

throughout the help system. This provides the user easy access to a position which

is funillar should he become lost. In addition, it allows the user to access help in

areas not contained in the current Guideline. This includes information concerning

other GLAD Windows and operations, not contained in the current Guideline.

"Should the user have a specific topic that requires explanation, he can use the

search capabilities provided by Guidance. When the user selects SEARCH from any

help window menu, a dialog box appears requesting the search topic. Guidance

searches the current Guideline to locate information on this topic. If a string

corresponding to the requested topic is contained in the current Guideline, the Guideline

is displayed at that position of the information.

If the user desires a printed copy of the on-line help information, it can be printed

by selecting PRINT from any GLAD help window menu bar. The document will be

printed as it appears on screen. If an extended print-out of on-line information Is

desired, expansion buttons can be unfolded providing the full information available on

the screen. If fewer details are required copy, only the desired information should be

displayed, prior to selecting PRINT. Figure 4.10 displays an example of a GLAD help

window with the TOP, SEARCH, and PRINT menu selections.

40

Erlnt 'lop Searcht 1ack Fl mKLP
(4.1) DDL WINDOW selections

(4.1. 1) SAVE- This menu selection will saves changes to the
database schema to a disk file for later use.
(4.1.2) DEFINE - Selecting define allows the user to define
new objects for an existing or new.
(4.1 ,8)ATTRIBUTE - Permits definitions of attributes for defined.
data entities.
(4.1.4) EXPAND 4Jlows the definition of special~lzation entities
for a nested objeot.
(4.1 .5)DELETE - Selecting delete will delete entitles from the
database schema which are no longer needed,

(K.1.8) HEZP -Provides comprehensive user assistance, For
Information concerning the reading of hypertext and using this
help system, dick on HELP at beginning of this paragraph. For.
an Index to G LAD help topics click on 11 GLAD help Index'

Filmu 4.9 Example Numbeftin Uu.4 To Minimiue Unr'Dlsrisntadon

£rlnt lop flea0ch Backt FinELP

(1.1) GLAD WINDOW menu:

(1. 1. 1) CREATE - allows generation of now database

(1.1.2) MODIFY - allows an existing database to be changed

(1.1.3) OPEN - presents existing database for manipulation

(.1 .14) REMOVE - delete an existing database

Plgmz 4. 10 GLAD Help Window Menu

41

Any word or concept within the Guideline that may require further explanation is

linked to a Note button. This serves as an on-line glossary of terms, providing the

user quick explantions of unfmilia terminology. Flgure 4.11 example show an

example of a .Note button which is used to provide further explanation for the term

"Select". Text which is a Note button is visually indicated by an underline.

Guidelines am constructed in accordance with the Guide and Guidance User

Manuals, Help windows have been designed to present a complete description of an

operation within a single window. This prevents the user from being required to scroll

through multiple windows to obtain the information desired. This was not possible in

all situations. Some operations required more than one screen to fully explain the

operation.

D. 'MEMORY MANAGEMENT

Throughout the development of the GLAD help system, memory management has

been a troublesome issue, Attempts to integrate Guidance and GLAD within the

ACTOR program environment on a 640K machine weie unsuccessful. The only

solution which allowed GLAD and Guidance to run simultaneously within the ACTOR

programming environment was expanded memory. An additional megabyte of memory

and the memory manager utility 386 Max' were required. This enabled GLAD and

Guidance to run within the ACTOR programming environment. It was believed that

'306 Max is a trzademark of Qual1ita , Ina.

42

grn ,1 jae11ac INL

1 gtOpen from the GA Mco meultbox.. ~

containng, a lhlebow of the 0 LAD Matom~ lmWrt the
one hoM ab"ove L wlSPear.

1' ~220uCa..he' nime of the daftasse ypu %tnt to open from
- ~~~the lintbc.x. After adAtbp$.* is19L ditw~ appeWr

hi hil htedOi thes 110tbo

Figure 4.11 Rzartple Note Button.

once development was complete and a stand-lone version of GLAD produced,

oexpnded memory would be wuntiessary. Development of a stand-alone application

using A~O involves a process *C removing porticons of ACTOR which are not used

by the application. For examiple, the ACTOR D*buggr, Edtor and Browser were

removed and consequnstly freed umeory for GLAD. Once the code required to

Incorporate Guidance with GLAD was written and tested within the ACWrR

anviromes, a stand-alone application was produced. Unfortunately, development of

a stand-alone did not produce the desited results.

43

The help system operaes correctly with one or two GLAD Winidows open.

Opening more then two windows reduces the smount of memory available to the help

system to a point where memory Is Insufficient to correcty display the Guidelines.

Insuiftlent memory riesults In an error msaerequesting the user th close one or

more windows. If expanded memory Is available, GLAD wad the help system work

perfectly together.

44

V. CONCLUSIONS

A. STRENGTHS AND WEAKNESSES

The purpose of this thesis was to design a help system for GLAD. The help

system developed met the six design principles of GLAD while incorporating important

features necessary in a help system. The strengths of the design are:

• The hypertext capability provides access to virtually endless amounts of
information without reading unnecessary information.

* It is intuitive, easy to learn and use.
* It is powerful and cost effective in terms of time to implement,
* It is extensible.
. Minimal changes to GLAD weia required to incorporate the help system.
* Graphics as well as text ire easily incorporated.

The weaknesses of the proposed help system are:

s The help system will not run correctly without expanded memory.
* Despite the indexing system, the potential for the user to become disoriented

within a hypertext document still exists.

The major weakness of this design is the requirement for expanded memory in

order to achieve its full functionality. While the design constraints did not specifically

state that this help system was limited to operation on a computer with 640K of

memory, this is the most common memory capability of IBM compatible computers.

The requirement for additional memory limits the use of this help system to computers

that have expanded memory.

45

,•.;•,. , 4,

The implications of this requirement for additional memory may be that 640K is

too limiting for a project the size and scope of GLAD. Intuitive, user friendly, graphic

interfaces require resources, specifically memory. More memory is required as more

features are added to a system. As GLAD expands, it will continue to require more

memory. If 640K is an absolute requirement, it will not only limit the capabilities of

the help system, but also the capabilities of the entire GLAD project.

The GLAD project must not be constrained by limiting memory to 640K. A

choice must be made between an inferior help system which would allow GLAD to

operate within 640K, or the proposed help system which is more capable, is easier to

change and will better serve the needs of GLAD. The help system as proposed best

suits the needs of the GLAD project. Restricting GLAD to a 640K of environment

will result in a situation such that, as GLAD is developed and expanded, the help

system will necessarily deteriorate.

The limitations associated with the 640K memory barrier imposed by the DOS

operating system have been documented for at least five years. These limitations have

become a driving force behind the development of operating systems such as O52,

which provide greater capabilities. This hurdle of memory limitation must be dealt

with, in order to implement any help system as well as to develop GLAD to its fullest

potential.

46

-- -- I

B. FUTURE AREAS OF RESEARCH

Methods to make maximum use of available memory need to be explored. Possible

areas of research include exploring development of GLAD with OS2 or UNIX to

alleviate memory difficulties. Along with research into OS2 and UNIX, methods which

would allow MS-DOS machines to take advantage of memory beyond 640K should be

investigated. Investigations into optimizing the memory demanded by GLAD would

also be beneficial.

Constructing hypertext documents to provide the best access to information for

users is another area of possible research. Additional methods of indicating to the user

where he is in the hypertext document need to be developed to eliiinate the

disorientation a user may experience when reading a hypertext document.

An intelligent help system that determines where the user is in a program and

suggests courses of action or corrects mistakes is an area that deserves further

exploration and research. Sound may also enhance the help system, as well as

animation. These features require technology which is not currently available and may

be too costly in terms of actual benefits to the GLAD project.

47

APPENDIX A - SAMPLE SECTION OF GLADVO2.RC

This appendix contains a portion of the file gladvO2.rc. Only the section pertinent
to the implementation of the help system menus is shown.

OlafropMenu MENU
BEGIN

MENUITEM "Create", 1
MENMITEM "Modify", 2
MENITEM 1vpen", 3
MENUTEM "Remove", 4
MENUITEM "Quit", 6
MENUITEM 'NaF1=Help", HELPER, HELP

END

GladDmlMenu MENU
BEGIN

MENuITEM "Describe", I
MENUITEM "Expand", 2
POPUP "ListMembers"
BEGIN

MENUITEM "All at Once", 3
MENUITEM "One by One", 4
END
POPUP "Change"
BEGIN

MENUlTEM "Add data", 5
MENUITEM "Delete data",6
MENLITEM "Modify data", 7
END
MENUITEM "Query", 8
MENUITEM "ShowConnection", 9
MENUIrFEM "Quit", 11
MENUITEM "\&Fl=Help", HELPER, HELP

END

48

GladfldlMcnu MENU

MIENUlTm "Save", I
MENUITM "Definell, 2
m7N~rf`EM "Attribute"', 3
ME3NMlEM "Expanid", 4
MENUXTEM "Dele-te", 5

MENUFEM"Quit", 7
MENurTEM wiamlHelp", HELPERHELP

END

GladLMMenu MENU
BEGIN

MENUrTEM "More", 1
MENUITEM "Modify", 2
1MLNU1TEM "Quit"l, 4
MENUITEM "'NaFlaHelp", HELPEROHELP

END

GladOMMenu MENU
BEGIN
MlENUITEM "Add", 1
MENUITEM "Delete", 2
MEN~LTEM "Modify", 3
MENIqTEMl "Prev", 4
MENUrTEM "Next". 5
POPUP "GoTo"
BEGIN
MENUFTEM "First", 6
MENUlTEM "Last", 7
MENUrITEM "I th", 8

END
MENUITEM "lAll", 9
MN!ErtlTM "lQuit", I11
MENUITEM "'Wa~lHelp", HELPERHELP

END

49

OLADVO2 ACCELERATORS
BEGIN

VK.JNSERT, EDIT-.PASTE, VIRTKEY
YILUBW."ACF EDIT-.CUT, VIRTflEY
,,VK.MADDs EDITCWoPY ftTKlEY

* ~VK..LE"r, VK..LEFT, VIRTKE
VKUVP, VK.UP, VIRTIC
VK...RaQr, VK-.R1OHTf VIRTIC
'VK..DWN, VILDOWN, VIRTKEY

"a", EDIT-SMALL **

* "As", RREORM

* I VK Fig HELPER, VIRTKEY
VKJTAB, ,EDITTAB, VIRTKEY
VKJPRIOR, EDIT-PRIOR, VIRTKEY
VKJ4EXT, EDIT-NEXT, VIRTKEY
VKYOME EDITYHOME, VIRTKEY
VK_.END, EDIT-END, VIRTKEY

VY.-DOEI2E, EDIT-CLEAR, VIRTK.EY
V&DELETE, EDIT-.CUT, VIRTKEY, SHIFT
VK.U4SERT, EDIT-.COPY, VIRTKEY. CONTROL
VKJNSERT, EDIT..PASFrE, V1RTKEY, SHIFT

END

50

APPENDIX B - GLAD INITMENUID METHODS

GLAD WINDOW CLASS

* Def initMenuID(self)

nienuiD:- %Dictionary (-#makeNewDb
2->OnodifyDb
3-4cpenDb
4->#nmoveDb
950.>OtopHelp
6->#close)

DM WINDOW CLASS

Def initMenulD(self)

menulD := %Dictionary(1->#doacribe
2-~.#expand
3->#listMembers
4->#oneMember
5->OaddMember
6->#deleteMemtier
7->OmodifyMember
8->#query
9->OshowConnection
950->#hclp
I1I ->#Clowe

51

DDWINDOW CLASS

Def initMenulD(self)

menulD :-%Dictlonuy(I->#saveSchemm,.
2->#deflnObj,

4.>#dotNcsted~bjects,

95O-.>Mwlp,

DISPLAY ONE WINDOW CLASS

Def initflenuD(self)

manulD: %Dictionary(1.4#addMember
2->#delcteMomber
.3.>OmodifyMember
4.>#prov
S.>Onext
6->0first
7->'#1ast
8->#SoTolth
9.>#ai1AtOnce
950->#help
I ->Oclose)

LIST MEMBERS WINDOW CLASS

Dot ninkMenulD(self)

mienuID :-%Dictionay(1->Omore
2->Omodify
950->Ohelp
4->#close)

52

LIST OF REFERENCES

Conklin, Jeff, "Hypertext: An Introduction and Survey", IEEE, September 1987.

Draglanz, Michael, "Dynamic Link Libraries Under Windows", Computer Language,
Vol. 6, no. 5, 1989.

Duff, Charles, and others, Actor Language Manual, The Whitewater Group, 1989.

Dumas, Joseph S., Designing User Interfaces for Software, Prentice Hall, 1988.

Galitz, Wilbert, Handbook of Screen Format Design, 3rd Edition, QED Information
Sciences, Inc., 1989.

Guidance: Hypertext Help S.ystem, Hyperrext for Software Developers, Owl
International, Inc., 1988.

Guide: Hypertex for the PC, Owl International, Inc., 1988.

"Help, R Company Ltd., 1988.

Jackson, Peter and Lefrere, Paul, "On the Application of Rule-based Techniques to the
Design of Advice Giving Systems", hit. Journal of Man-Machine Studies, Vol. 20,
1983.

Kearaley, Greg. Online Help Systems: Design and Implementation, Ablex Publishing,
1988.

Killory, J.P., "Computer-Human Interaction and the Documentation Puzzles", Computers
and People, Vol. 30, Nos. 5 & 6, 1987.

Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall, 1988.

Petzold, Charles, Programming Windows, Microsoft Press, 1988.

53

Roberts, Roger, "Help -A Question Answering System", A PIP S Cottference
Proceedings, Vol. 37, Fall Joint Computer Conference, 1970.

Rowell, Michael, The Suitability of an Object Oriented Lan guage fop- Prototyping aped
Abstracting Data Types, Master's Thesis, Naval POostrauate School, June 1988.

Shnsidiarman, Ben, Designing the User Interface. Strategies for Effective Human
Computer Indraction, Addison-Wesley Publishing, 1987.

Weiss, Edmond H., How to Write a Usable User Manual, 181 Press, 1985.

Williamson, Michael, An Implementation of a Data Definition Facility for the Graphics
Language for Database, Master's Thesis, Naval Postgraduate School, December 1988.

Wu, C. Thomas, GLAD: Graphics Language for~ Database, Prepared for Chief of
Naval Research, 1987.

Wu, C. Thomas and H69ao, David K., Imiplementation of Visual Database Intetface
Using an Object Oriented Language, Presented at IMIP TC-2 Working Conference on
Visual Database Systems, Tokyo, Japan, April 1989.

Wu, C. Thomas, "Benefits of Object-Oriented Programming to Implement a Visual
Database Interface", Case Studies of Object-Oriented Programming, Addison-Wesley.
Publication pending.

54

I'q

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library. Code 0142 2
Naval Postgraduate School
Monterey, California 93943-50022

gt'3. Commaandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001,

4' 41

4. Department Chairman, Code 52 2
Departmient of Computer Science
Naval. Post~radutte' School
Monterey, California 93943-5000

S.Curriculum Officer, Code 371
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor C, Thorn.. Wu, Code 52Hq 10
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor David Wioo
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

55

1; .;. ..-

8. ~Cakptain Lon M. YONr'
c/o Mr. Lon 0. Yeaxy
2N236 Pearl Avenue
Glen lilyn, Dhlnol 60137

I

..

56

